

Coordinating Robot Teams for Disaster Relief

Mark Roberts1, Thomas Apker2, Benjamin Johnson1,

Bryan Auslander3, Briana Wellman4 & David W. Aha2
1NRC Postdoctoral Fellow; Naval Research Laboratory, Code 5514; Washington, DC 20375

2Navy Center for Applied Research in AI; Naval Research Laboratory, Code 5514; Washington, DC 20375

3Knexus Research Corporation; Springfield, VA 22153
4Department of Computer Science and Information Technology; University of the District of Columbia; Washington, DC 20008

{mark.roberts.ctr; thomas.apker; benjamin.johnson.ctr; david.aha}@nrl.navy.mil | bryan.auslander@knexusresearch.com | briana.wellman@udc.edu

Abstract

To perform complex tasks, a team of robots requires both

reactive and deliberative planning. For reactive control, a

restricted variant of Linear Temporal Logic called General

Reactivity(1) can be used to synthesize correct-by-

construction controllers in polynomial time, but they often

ignore time and resource constraints to maintain tractable

synthesis. For deliberation, hierarchical planning can be

used to reason about time and resources. However, the

coordination of reactive control and deliberation remains a

challenge, which we accomplish through a set of

Coordination Variables. We integrate these two approaches

in the Situated Decision Process (SDP), a system that we are

developing. The SDP will allow an Operator to control a

team of semi-autonomous vehicles performing information

gathering tasks for Humanitarian Assistance / Disaster

Relief operations. We demonstrate that the SDP responds to

a dynamic, open world while ensuring that vehicles

eventually perform their commanded actions.

1. Introduction and Motivation

We study the problem of coordinating a team of semi-

autonomous vehicles to gather information soon after a

natural disaster strikes (e.g., the Philippines Typhoon).

Emergency response personnel need updated information

concerning the whereabouts of survivors, the condition of

infrastructure, and recommend ingress and evacuation

routes. Current practice for gathering this information

relies heavily on humans (e.g., first responders, pilots,

drone operators). A team of autonomous vehicles with

sensors can facilitate such information gathering tasks,

freeing humans to perform more critical tasks in

Humanitarian Assistance / Disaster Relief (HA/DR)

operations (US Dept. of Navy 1996). Coordinating robotic

teams in a HA/DR operation presents unique challenges

because each disaster is distinct. Thus, creating a single

robotic controller is untenable because no single domain

model can incorporate all the necessary steps for a mission.

Personnel should be able to tailor possible vehicle missions

to the current situation.

Reasoning on different granularities of abstraction and

time scales is a common challenge in robotics (e.g., task

planning vis-à-vis reactive planning). Robotic controllers

often employ Finite State Automata (FSAs) to determine a

robot’s next action. Although they are fast to execute,

hand-writing FSAs is error prone, tedious, and brittle.

Recent advances apply a restricted variant of Linear

Temporal Logic (LTL) called General Reactivity(1) to

automatically synthesize FSAs in time cubic in the size of

the final FSA (Bloem et al. 2012). But synthesis quickly

becomes impractical for teams or dynamic environments.

For example, Table 1 shows the number of seconds to

synthesize FSAs for two vehicles assigned to survey two or

more regions; limiting the FSA size is clearly justified.

Task planning is naturally suited to limit the FSA size

for teams of vehicles (e.g., by pre-allocating missions to

vehicles or by assigning vehicles to teams). We employ

hierarchical decomposition (task) planning because it

matches well with how humans view HA/DR operations

(US Dept. of Navy 1996).

However, linking the task and reactive planning layers is

a challenge. In particular, mission plans and vehicle

controllers must expose useful abstractions to each other

while allowing both to adjust to dynamic changes. To

address this, we introduce the use of Coordination

Variables, which integrate team mission goals with the

vehicle controllers by providing abstraction predicates for

vehicle commands, vehicle state (e.g., current behavior and

health), and abstract vehicle sensor data. A secondary

contribution of this paper is applying Goal Refinement

(Roberts et al. 2014) to coordinate those vehicle missions

in support of larger HA/DR operations.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2015 2. REPORT TYPE

3. DATES COVERED
 00-00-2015 to 00-00-2015

4. TITLE AND SUBTITLE
Coordinating Robot Teams for Disaster Relief

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Navy Center for Applied Research in
Artificial Intelligence,Code 5514,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
In Proceedings of the 28th Florida Artificial Intelligence Research Society Conference, Hollywood, FL,
May 18 - 20, 2015, in press. AAAI Press.

14. ABSTRACT
To perform complex tasks, a team of robots requires both reactive and deliberative planning. For reactive
control, a restricted variant of Linear Temporal Logic called General Reactivity(1) can be used to
synthesize correct-by-construction controllers in polynomial time, but they often ignore time and resource
constraints to maintain tractable synthesis. For deliberation, hierarchical planning can be used to reason
about time and resources. However, the coordination of reactive control and deliberation remains a
challenge, which we accomplish through a set of Coordination Variables. We integrate these two
approaches in the Situated Decision Process (SDP), a system that we are developing. The SDP will allow an
Operator to control a team of semi-autonomous vehicles performing information gathering tasks for
Humanitarian Assistance / Disaster Relief operations. We demonstrate that the SDP responds to a
dynamic, open world while ensuring that vehicles eventually perform their commanded actions.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

We describe an initial prototype of our Situated Decision

Process (SDP), which manages vehicles that can perform

three mission goals: (1) survey a region to assess roads, (2)

locate a person, and (3) act as a communications relay for

that person. We envision that a human Operator would

input a set of HA/DR mission priorities to the SDP, which

would aid the Operator in managing the vehicles to

perform those missions. We describe a minimal HA/DR

scenario (§2) and then detail the components of our SDP

prototype (§3). We then demonstrate how the SDP

responds to a dynamic, open world scenario while tracking

progress toward mission goals (§4). We conclude by

discussing related work (§5) and future work (§6).

2. HA/DR Scenario and Domain Model

Figure 1 shows an airport region (upper left) and, 3-5 km

away from the airport, a Very Important Person (VIP)

region (lower middle) that is centered on a particular

building near the suspected location of the VIP. The VIP

emits a radio signal (e.g., cell phone signal). Two fixed-

wing air vehicles (in yellow) are tasked with assessing the

two regions and finding the VIP. They carry Electro

Optical and Radio Frequency sensors that activate when

the target is within their sensor radius.

 Although we designed significantly more challenging

scenarios, we can use this minimal scenario to demonstrate

the SDP’s key capabilities, namely that: (1) the SDP can

create new goals responding to an open world (e.g., it

collectively responds to the VIP being found); (2) a vehicle

can make decisions autonomously (e.g., a vehicle may

begin relaying the VIP once found); (3) the SDP responds

to vehicles making autonomous decisions (e.g., it notes the

vehicle relaying instead of surveying when the VIP is

found); and (4) the SDP can retask a vehicle to complete a

mission (e.g., it retasks stalled missions to idle vehicles).

3. Situated Decision Process (SDP)

Figure 2 displays an abstraction of the SDP components

we discuss in this paper. The SDP is partitioned into three

abstract layers, each composed of components that perform

specific tasks. The UI Layer (colored white) manages

interaction with the Operator. In this layer, the User

Interface (UI) component collects input from a human

Operator and conveys Operator feedback to the other

components. However, it is not a focus of this paper and

we will not discuss it further. The Centralized

Coordination Layer (colored gray) focuses on the mission

and task abstractions for the vehicle teams. The Distributed

Layer (colored black) manages the vehicles or vehicle

simulation. We now detail the components in the

Centralized Coordination and Distributed layers.

3.1 Domain Manager

To construct a domain model, we elicited feedback from

three Navy Reservists who have flown in or commanded

HA/DR operations. We then encoded the domain

knowledge as a Hierarchical Goal Network (Shivashankar

et al. 2013; Geier & Bercher 2012). Figure 3 displays the

goal network for the scenario in Figure 1. The root

decomposes into two top-level operational goals “Logistics

Operations” and “Security Operations.” The former of

these decomposes into “Assess Infrastructure” while the

latter decomposes into a goal to “Maintain VIP Safety.”

 Operational subgoals eventually decompose into

AchieveTeamMission goals, which themselves decompose

into the VehicleMission goals associated with specific

Figure 1: Example airport and VIP regions. The base is

located between the regions. Also shown are the

trajectories (blue lines) for two vehicles (yellow dots).

Table 1: Synthesis times as the number of regions

increases in the LTL specification as measured on a

Windows 8.1 laptop, running a Core i5 processor.

Survey

Regions
Propositions

Synthesis Time

(seconds)

2 14 1.078

3 16 3.675

4 18 17.608

5 20 104.008

Figure 2: An abstract view of the Situated Decision

Process (SDP). Nodes are colored by layer: UI (white),

Coordination (Gray), and Vehicle (black).

teams. These most primitive goals of this goal network are

intended to match with tasks that the vehicles can perform.

The goal network presented here is hand-coded, but we

plan to implement this model in the ANML language

(Dvorák et al. 2014) and integrate a full planning system in

the SDP. The SDP will eventually guide vehicles in

cooperation with its Operator(s), but in this paper we

assume static mission goals, a fixed number of vehicles,

and a fixed allocation of the vehicles to tasks.

3.2 Mission Manager and Goal Refinement

The Mission Manager decomposes the high-level mission

goals provided by the user (e.g., regions of interest, overall

vehicle tasks, and available vehicles) into primitive goals

for the vehicle teams. One of the challenges in

coordinating task and reactive planning is unifying the

goals across the system so that goals can be tracked during

execution. To unify goals, we employ a theoretical model

called Goal Refinement (Roberts et al. 2014) that builds on

previous literature in Goal Driven Autonomy (Klenk et al.

2013), which is a model of Goal Reasoning (Vattam et al.

2013). Goal Refinement incorporates recent perspectives

on the actor (Ghallab, Nau, and Traverso 2014) as well as

deliberation functions (Ingrand and Ghallab 2014). Goal

Refinement also complements a plan’s lifecycle (e.g.,

(Pollack and Horty 1999; Myers 1999)).

 A central part of Goal Refinement is the Goal Lifecyle,

shown in Figure 4. This lifecycle captures the possible

decision points of goals in the SDP. Decisions consist of

applying a strategy (arcs in Figure 4) that transitions a goal

among modes (rounded boxes) in the lifecycle. The 𝑔’s in

the goal lifecycle correspond to goals (e.g., goals in the

goal network of Figure 3), while 𝑥’s correspond to

expansions (e.g., decompositions of non-primitive goals,

allocations and trajectories for primitive goals).

 We focus our discussion the lifecycle strategies that we

implemented for the SDP and the goal network in Figure 3.

While this particular scenario does not exercise all the

strategies of the goal lifecycle, the more advanced

scenarios we designed exercises all the strategies.

 When loading, the SDP automatically formulates and

selects an initial goal to AchieveDomainLoaded (not

shown). The expansion of this goal results in the “AACS

Domain Root” goal being formulated and selected. A non-

primitive domain goal is expanded by instantiating a sub-

goal tree for the goal. The SDP commits to and dispatches

the only expansion available for these goals, since this is a

small example. These non-primitive goals remain in a

dispatched state until their subgoals finish.

 Expanding an AchieveTeamMission goal results in a

specific VehicleMission goal, which includes details

regarding a proposed allocation of a vehicle to a specific

trajectory (cf. the lawnmower flight paths of Figure 1).

Once the VehicleMission details are approved – either

automatically or by the Operator – the Mission Manager

commits and dispatches the proposed expansion of the

VehicleMission for execution. The Coordination Manager

and Team Executive then begin sending vehicle

commands. The VehicleMission goal remains dispatched

until new information (e.g., a progress update) causes it to

become finished or need some other resolve strategy.

 The Mission Manager has triggers to monitor the

dispatched goals so that it will notice if the goal is stalled

or completed by the executive. The Mission Manager uses

a repair strategy on the original vehicle allocation to

retasking a vehicle for a stalled VehicleMission,

3.3 Synthesis Manager

The Synthesis Manager takes as input an LTL specification

and synthesizes an FSA for the Vehicle Controller. To

perform synthesis, we extend the work of Kress-Gazit et al.

(2009) using portions of the LTLMop toolkit (Jing et al.

2012). LTL compactly encodes the mapping between the

Centralized Coordination Layer's commands and the

robots' behaviors, along with any restrictions on their

capabilities. This allows SDP to generate reactive

controllers that match a specification without requiring a

hand-coded FSA. Space limitations preclude a full

exposition of General Reactivity(1) or LTL Synthesis.

 Figure 5 provides a readable example of the LTL

English equivalent. "Goals" in an LTL specification

describe behaviors that the vehicle is required to perform

infinitely often (i.e., always eventually do behavior). Line

1 specifies the vehicle actions, where each action

corresponds to a vehicle behavior that performs the

intended action. Line 2 details the LTL sensors, which are

Figure 3: Goal decomposition during an SDP run.

Figure 4: The Goal Lifecycle by Roberts et al. (2014).

the observations that the robot can take (see §3.4 for more

detail). Line 3 specifies the initial conditions. Line 4

specifies a safety condition concerning LowFuel. Line 5

specifies that at least one command is active. Lines 6-12

perform “goal” selection based on sensors. Lines 13-16

perform conditional action selection depending on the

state. A region file (not shown) specifies the regions and

their adjacencies, which include Base, AreaA, and AreaB.

3.4 Coordination Manager & Coordination

Variables

To link the mission goals and vehicle FSAs, we use

Coordination Variables, which capture the key

abstractions of each layer for each other. These variables

are linked to the VehicleMission goals in the Mission

Manager (see Figure 3) and to the sensors of the LTL

specification (Figure 5, line 2). Each layer responds

differently to these variables during execution.

 Command Variables are provided to control the

vehicle behavior. For our example scenario the commands

are DoSearchA, DoSearchB, DoRelay, DoSearchReactive,

and DoReturn. The Mission Manager uses these variables

to command a vehicle to perform a specific task. The Team

Executive can send progress updates using these variables.

 Mission Variables allow the Vehicle Controller and

Team Executive to send updates about notable events. The

only Mission Variable is VIPDetected.

 Health Variables allow the Vehicle Controller and

Team Executive to send updates about vehicle status. For

this scenario the only Health Variable is LowFuel.

3.5 Team Executive, Vehicle Control and

Simulation

The Team Executive sets/unsets the Command sensors on

the vehicles' FSAs based on the schedule developed by

Mission Manager. It also maintains each vehicle's status

and sensor information, allowing the Centralized

Coordination Layer to monitor the team's progress and

detect notable events.

 Vehicles are controlled using hybrid controllers that read

the FSA and reactively select a physics-inspired behavior

implemented using physicomimetics (Apker et al. 2014).

We simulated the scenario in MASON (Luke et al. 2005).

4. Demonstration

To demonstrate how the SDP responds to a notable event

in an open world we generate 30 scenarios based on Figure

1. We select 30 random airports from OpenStreetMaps

data for North Carolina (Geofabrik 2014) and then select

buildings within 3-5 kilometers of the airport. Buffer

regions of 300 meters around the airport and the building

serve as the airport and VIP regions, respectively. Each run

completes when (1) both regions are completely surveyed

and the VIP is found or (2) the simulation reaches 35,000

steps. Each step is approximately one second of real time

simulation.

 At the start of the scenario, one vehicle is assigned to

assess the Aiport Region, denoted by AirportVehicle, and

the other vehicle is assigned to the VIP Region, denoted

VIP Vehicle. Vehicles return to the base when their fuel is

sufficiently low. Vehicle behavior depends on whether the

vehicles can retask themselves to relay when the VIP is

found (denoted +Relay) or they do not relay (–Relay).

Regardless of whether a vehicle begins relaying, the

Mission Manager should always create a new “Relay VIP”

goal when the VIP is found. The Mission Manager

behavior depends on whether it is allowed to retask a

vehicle (+Retask) or not (–Retask).

Condition 1: Find VIP (-Relay -Retask) provides a

baseline. In it the vehicles detect the VIP and a new goal to

relay the VIP appears when the VIP is found. Getting the

SDP to do something meaningful with the “Relay VIP”

goal is our next condition.

 Condition 2: Relay VIP (+Relay -Retask)

demonstrates that a vehicle can retask itself with a new

goal by automatically relaying the VIP once found. The

retasking is embedded in the Vehicle Controller (see

Figure 5, line 15). However, this change of behaviors

needs to be shown in the goal network, where the goal

“Mission: RelayVIP” should appear after the VIP is found.

However, nothing is done with the new goal and VIP

Vehicle does not complete the entire survey of the VIP

region because it switches its own task to relaying.

1. Actions: ExploreA, Relay, ExploreA, Search, Recharge

2. Sensors: DoSearchA, DoSearchB, DoRelay, DoSearchReactive,
DoReturn, VIPDetected, LowFuel

3. robot starts in Base with false; environment starts with DoSearchA

4. if you sensed LowFuel then always LowFuel
5. if you are sensing DoRelay then

always not DoReturn and not DoSearchReactive

6. if not LowFuel and DoSearchA and not DoRelay then
infinitely often ExploreA

7. if not LowFuel and DoSearchB and not DoRelay then

infinitely often ExploreB
8. if not LowFuel and DoSearchA and DoRelay then

infinitely often ExploreA or Relay

9. if not LowFuel and DoSearchB and DoRelay then
infinitely often ExploreB or Relay

10. if not LowFuel and DoSearchReactive then infinitely often Search

11. if not LowFuel and DoReturn then infinitely often Base

12. if LowFuel then infinitely often Recharge

13. do ExploreA iff robot is in AreaA and not sensing LowFuel and

not sensing (VIPDetected and DoRelay) and sensing DoSearchA
14. do ExploreB iff robot is in AreaB and not sensing LowFuel and

not sensing (VIPDetected and DoRelay) and sensing DoSearchB

15. do Relay iff you are not sensing LowFuel and sensing
VIPDetected and sensing DoRelay

16. do Recharge iff you are in Base and sensing LowFuel

Figure 5: The approximate English description used for

synthesis of the controllers in the demonstration.

 Condition 3: Relay and Retask (+Relay +Retask). To

address the problem of the VIP region remaining

unfinished, the Centralized Coordination Layer is allowed

to retask the Airport Vehicle so it finishes the VIP Region

survey after completing its area first.

 When we run the simulation on the three conditions, we

observe exactly the expected results. In every case, a new

goal is observed in the Mission Manager after the VIP is

found. In the Relay VIP condition, the VIP Vehicle begins

relaying as expected, leaving the VIP Region unfinshed.

When the Mission Manager is allowed to retask vehicles,

we observe that all three missions complete.

5. Related Work

Planning trajectories for teams a priori to achieve a single

objective requires solving a high dimensional optimization

problem (Yilmaz et al. 2008) to compute optimal

trajectories that are tightly coupled to the initial

assumptions/goal. Bio-inspired and other reactive guidance

strategies simplify this problem by using more goal-

directed behaviors for area coverage (Liu and Hedrick

2011) and discrete target tracking (Haque et al. 2008;

Kruecher et al. 2007). These behaviors rely on local

measurements and instantaneous gradients to guide robots.

Still, no behavior or trajectory generator can handle all

contingencies a priori in complex, open environments.

A promising approach, inspired by animal behavior,

uses FSAs for mobile robot guidance (Balch et al. 2006).

Hand-coding an FSA for each execution of a robot is

tedious and error prone. Kress-Gazit et al. (2009) instead

synthesize an FSA from an LTL specification using a game

theory approach (Bloem et al. 2014) in which the robot

takes actions to achieve its goals against actions taken by

the environment (i.e., the adversary). This strategy

guarantees correct behavior if the LTL-spec is never

violated, but synthesis is quadratic in the number of

(environmental and sensing) goals (Bloem et al. 2012) and

is intractable for large teams of robots. Our approach

preselects missions for vehicles prior to the synthesis of an

FSA, which reduces the size of the LTL specification and

thus reduces the computational time for synthesis.

Goal refinement builds on the work in plan refinement

(Kambhampati, Knoblock, & Yang 1995), which equates

different kinds of planning algorithms in plan-space and

state-space planning. Extensions incorporated other forms

of planning and clarify issues in the Modal Truth Criterion

(Kambhampati and Nau 1994). More recent formalisms

such as Angelic Hierarchical Plans (Marthi et al. 2008) and

Hierarchical Goal Networks (Shivashankar et al. 2013) can

also be viewed as leveraging plan refinement. The focus on

constraints in plan refinement allows a natural extension to

the many integrated planning and scheduling systems that

use constraints for temporal and resource reasoning.

The goal lifecycle bears close resemblance to that of

Harland et al. (2014) and earlier work (Thangarajah et al.,

2010). They present a goal lifecycle for BDI agents,

provide operational semantics for their lifecycle, and

demonstrate the lifecycle on a Mars rover scenario. Work

by Winikoff et al. (2010) has also linked Linear Temporal

Logic to the expression of goals. Our work differs in that it

focuses on teams of robots rather than single agents.

Our approach of coordinating behaviors with constraint-

based planning is inspired by much of the work mentioned

by Rajan, Py, and Barriero (2013). Our Team Executive

leverages the Executive Assistant of Berry et al. (2003).

6. Summary and Future Work

We detailed our implementation of a system, called the

SDP, which links hierarchical task planning (i.e., a goal

network) and reactive controllers by synthesizing correct-

by-construction FSA vehicle controllers. The central

contribution of this paper is an interface (i.e., the

Coordination Variables) that allows task planning to

control and receive feedback from a reactive layer. Our

approach saves considerable computation during FSA

synthesis. In a small demonstration, we showed that our

implementation of the SDP adjusts to notable events (e.g.,

finding a VIP) or retasks vehicles to continue stalled

missions when such events occur.

 Future work will consist of further automating portions

of the SDP and enriching the domain model. For example,

we plan to extend the domain model to fully encode

temporal and resource concerns similar to the TREX

system (Rajan, Py, and Barriero 2013). We also plan to test

the SDP in more challenging environments, which will

require allowing vehicles to set their own command

sensors autonomously and moving the Team Executive to

the robotic platforms with sufficient computational power.

Finally, we plan to incorporate richer sensor models and

higher-fidelity simulations. Ultimately, we plan to run the

SDP on actual vehicles and perform user studies on its

effectiveness in helping an Operator coordinate a team of

vehicles in Disaster Relief.

Acknowledgements

Thanks to OSD ASD (R&E) for sponsoring this research.

The views and opinions in this paper are those of the

authors and should not be interpreted as representing the

views or policies, expressed or implied, of NRL or OSD.

We also thank the reviewers for very helpful feedback that

helped improve the paper.

References

Apker, T., Liu, S.-Y., Sofge, D., and Hedrick, J.K. (2014).
Application of grazing-inspired guidance laws to autonomous
information gathering. Proc. of the Int’l Conference on Intelligent
Robots and Systems (pp. 3828-3833). Chicago, IL: IEEE Press.

Balch, T., Dellaert, F., Feldman, A., Guillory, A., Isbell, C.L.,
Khan, Z., Pratt, S.C., Stein, A.N., & Wilde, H. (2006). How
multirobot systems research will accelerate our understanding of
social animal behavior. Proc. of the IEEE, 94(7), 1445-1463.

Berry, P., Lee, T. J., & Wilkins, D. E. (2003). Interactive
execution monitoring of agent teams. Journal of Artificial
Intelligence Research, 18, 217–261.

Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Saʼar, Y.
(2012). Synthesis of Reactive(1) designs. Journal of Computer
and System Sciences, 78(3), 911–938.

Dvorák, F., Bit-Monnot, A., Ingrand, F., & Ghallab, M. (2014). A
Flexible ANML Actor and Planner in Robotics. In Working
Notes of the Planning and Robotics Workshop at ICAPS.
Portsmouth, NH: AAAI.

Geofabrik. OpenStreetMap Data Extracts. (2014) Accessed from
http://download.geofabrik.de/index.html.

Ghallab, M., Nau, D., & Traverso, P. (2014). The actor’s view of
automated planning and acting: A position paper. Artificial
Intelligence, 208, 1–17.

Geier, T. & Bercher, P. (2011). On the decidability of HTN
Planning with task insertion. In Proc. of the 22nd Int’l Joint Conf.
on AI. (pp. 1955-1961). Barcelona: AAAI.

Harland, J., Morley, D., Thangarajah, J., & Yorke-Smith, N.
(2014). An operational semantics for the goal life-cycle in BDI
agents. Autonomous Agents and Multi-Agent Systems, 28(4),
682–719.

Haque, M., Rahmani, A, & Egerstedt, M. (2010). Geometric
foraging strategies in multi-agent systems based on biological
models. Proc. of the IEEE Conf. on Decision and Control (pp.
6040-6045). Atlanta: IEEE.

Ingrand, F., & Ghallab, M. (2014). Robotics and artificial
intelligence: A perspective on deliberation functions. AI
Communications, 27(1), 63-80.

Jing, G., Finucane, C., Raman, V. and Kress-Gazit, H. (2012).
Correct high-level robot control from structured English. Proc. of
the Int’l Conf. on Robotics and Automation (pp. 3543-3544), St.
Paul, MN: IEEE Press.

Kambhampati, S., Knoblock, C.A., & Yang, Q. (1995). Planning
as refinement search: A unified framework for evaluating design
tradeoffs in partial-order planning. Artificial Intelligence, 76,
168-238.

Kambhampati, S. & Nau, D. (1994). On the nature of modal truth
criteria in planning. Proc. of the 12th Nat’l Conference on AI (pp.
67-97). Seattle, WA: AAAI Press.

Klenk, M., Molineaux, M., & Aha, D.W. (2013). Goal-driven
autonomy for responding to unexpected events in strategy
simulations. Comp. Intell., 29(2), 187-206.

Kress-Gazit, H., Fainekos, G.E., & Pappas, G.J. (2009). Temporal
logic based reactive mission and motion planning. Transactions
on Robotics, 25(6), 1370-1831.

Liu, S-Y., & Hedrick, J.K. (2011). The application of domain of
danger in autonomous agent team and its effect on exploration
efficiency. Proc. of the Am. Control Conf. (pp. 4111-4116). San
Francisco: IEEE.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., & Balan, G.
(2005). Mason: A multiagent simulation environment.
Simulation, 81(7), 517-527.

Marthi, B, Russell, S., & Wolfe, J. (2008). Angelic hierarchical
planning: Optimal and online algorithms. Proc. of the Int’l Conf.
on Automated Planning and Scheduling (pp. 222-231). Menlo
Park, CA: AAAI.

Myers, K.L. (1999). CPEF: A continuous planning and execution
framework. AI Magazine, 20(4), 63-69.

Pollack, M.E., & Horty, J. (1999). There’s more to life than
making plans: Plan management in dynamic, multiagent
environments. AI Magazine, 20, 71-83.

Rajan, K., Py, F., & Barreiro, J. (2012). Towards deliberative
control in marine robotics. In Marine Robot Autonomy (pp. 91–
175). New York, NY: Springer.

Roberts, M., Vattam, S., Alford, R., Auslander, B., Karneeb, J.,
Molineaux, M., Apker, T., Wilson, M., McMahon, J., & Aha,
D.W. (2014). Iterative goal refinement for robotics. In Working
Notes of the Planning and Robotics Workshop at ICAPS.
Portsmouth, NH: AAAI.

Shivashankar, V., Alford, R., Kuter, U., & Nau, D. (2013). The
GoDeL planning system: A more perfect union of domain-
independent and hierarchical planning. Proc. of the 23rd Int’l
Joint Conference on AI (pp. 2380-2386). Beijing, China: AAAI
Press.

Thangarajah, J., Harland, J., Morley, D., & Yorke-Smith, N.
(2011). Operational behaviour for executing, suspending, and
aborting goals in BDI agent systems. In Declarative Agent
Languages and Technologies VIII (pp. 1–21). Toronto, Canada:
Springer.

U.S. Department of the Navy. (1996) Humanitarian
assistance/disaster relief operations planning, (Technical Report
TACMEMO 3-07.6-05). Washington, D.C.: Government Printing
Office.

Vattam, S., Klenk, M., Molineaux, M., & Aha, D. W. (2013).
Breadth of approaches to goal reasoning: A research survey. In
D.W. Aha, M.T. Cox, & H. Muñoz-Avila (Eds.) Goal Reasoning:
Papers from the ACS Workshop (Tech. Report CS-TR-5029).
College Park, MD: Univ. of Maryland, Dept. of Computer
Science.

Winikoff, M., Dastani, M., & van Riemsdijk, M. B. (2010). A
unified interaction-aware goal framework. In Proc. of ECAI (pp.
1033–1034). Lisbon, Portugal: IOS Press.

Yilmaz, N.K, Evangelinos, C., Lermusiaux, P., & Patrikalakis,
N.M. (2008). Path planning of autonomous underwater vehicles
for adaptive sampling using mixed integer linear programming.
IEEE Journal of Oceanic Engineering, 33(4), 522–537.

